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Visual Question Answering” by Agrawal et al (2018).
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Task and Motivation



Visual Question Answering (VQA)

What is the color of the refrigerator? white
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Visual Question Answering (VQA)

What is the color of the refrigerator? white

How many people are standing? 2
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Visual Question Answering (VQA)

Where is the conversation happening? kitchen
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Visual Question Answering (VQA)

Where is the conversation happening? kitchen

Is the woman mad? yes
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Why Should You Care?
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Potential Real World Impact

• Aiding Visually Impaired Users
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Potential Real World Impact

• Online Education
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Potential Real World Impact

• Online Education
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Potential Real World Impact

• Online Education
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Scientific Appeal

Multi-modal knowledge required; beyond a single sub-domain!
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Scientific Appeal

Effective combination is necessary!
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Scientific Appeal

Need to understand the question text AND look at the image.
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Scientific Appeal

Activity Recognition

Why are the men jumping? (to catch frisbee)
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Scientific Appeal

Fine-grained recognition

What kind of cheese is there on the pizza?
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Scientific Appeal

Knowledge Base Reasoning

Is the pizza vegetarian?
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Scientific Appeal

World Knowledge and Commonsense Reasoning

Is the person expecting company?
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Context



Evolving Datasets

• MS COCO (Lin et al).
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Evolving Datasets

• MS COCO (Lin et al).
• VQA 1.0 (Antol et al).
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Evolving Datasets

• MS COCO (Lin et al).
• VQA 1.0 (Antol et al).

• The evolution of datasets continued. Why?
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Problem: The Nuisance of Language Priors
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Problem: The Nuisance of Language Priors

• VQA models can be heavily driven by superficial correlations in
the training data and lack sufficient visual grounding.

• For e.g. - overwhelmingly replying to ‘how many X?’ questions
with ‘2’ (irrespective of X), ‘what color is . . . ?’ with ‘white’, ‘ is
the . . . ?’ with ‘yes’.
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Evolving Datasets

VQA 2.0 (Goyal et al)
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C-VQA (Compositional Split) (Agrawal et al)
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The Work



A Problem Persists

• Even in C-VQA, distribution of answers for each question type
does not change much from train to test. Models relying on
priors can still perform well on test set!
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A Problem Persists

• Even in C-VQA, distribution of answers for each question type
does not change much from train to test. Models relying on
priors can still perform well on test set!

• Why is this a problem? Benchmarking progress become difficult
- what is the source of improvement (priors/visual grounding)?
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A Problem Persists

• Even in C-VQA, distribution of answers for each question type
does not change much from train to test. Models relying on
priors can still perform well on test set!

• One Reason: IID train-test split of data having strong priors!
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Proposed Solutions

Authors come up with two ways to address the problem -
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Proposed Solutions

Authors come up with two ways to address the problem -

1. Change the train-test split! (Changing Priors Dataset).
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Proposed Solutions

Authors come up with two ways to address the problem -

1. Change the train-test split! (Changing Priors Dataset).
2. A new model for grounded visual question answering (GVQA).

31



Changing Priors

The VQA-CP v1 and VQA-CP v2 splits are created such that the
distribution of answers per question type (‘how many’, ‘what color
is’, etc.) is different in the test data compared to the training data.
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Changing Priors

33



Dataset Creation and Analysis

Question Grouping:
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Greedy Re-splitting:
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The GVQA Model

The proposed Grounded Visual Question Answering model.
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The GVQA Model

Step 1 (for any question): Question Classification
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The GVQA Model

Non yes/no

Step 2: VCC and ACP activated.
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The GVQA Model

Non yes/no

Step 2.1: Answer Cluster Prediction (ACP)
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The GVQA Model

Non yes/no

Step 2.2: Visual Concept Classifier (VCC)
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The GVQA Model

Non yes/no

Step 3: Answer Predictor (AP)
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The GVQA Model

yes/no

VCC and CE activated.
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The GVQA Model

yes/no

VCC - Visual concepts to verify over.

CE - Extract concepts to verify.
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The GVQA Model

yes/no

Visual Verification
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Results and Discussion
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Results and Discussion
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Results and Discussion
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Increased Transparency

GVQA - (VCC + ACP/CE) structure allows us to speculate why an
answer was given!

SAN - Stacked Attention Network - why does it predict what it
predicts?
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Increased Transparency
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Increased Transparency
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Critical Assessment



Designing the Train-Test Split

• Explicit designing of the train-test split.
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Designing the Train-Test Split

• Explicit designing of the train-test split.
• Addresses the problem of IID split in presence of strong priors.
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Designing the Train-Test Split

• Explicit designing of the train-test split.
• Addresses the problem of IID split in presence of strong priors.
• A useful idea beyond this particular work?
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Designing the Train-Test Split

• Different ‘split designs’ to control different priors?
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Designing the Train-Test Split

• Different ‘split designs’ to control different priors?
• How do different models fare on the different splits? Can we
gain more insights via that?
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Designing the Train-Test Split

• Different ‘split designs’ to control different priors?
• How do different models fare on the different splits? Can we
gain more insights via that?

• Building models that perform well across all these splits.

61



Does GVQA Overcome Priors?

• The problem, as stated in the paper - “It seems that when faced
with a difficult learning problem, models typically resort to
latching onto the language priors in the training data”.
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Does GVQA Overcome Priors?

• The problem, as stated in the paper - “It seems that when faced
with a difficult learning problem, models typically resort to
latching onto the language priors in the training data”.

• What happens when the GVQA model ‘faces difficulty’ and
makes an incorrect prediction? No real info provided.
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Does GVQA Overcome Priors?
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Does GVQA Overcome Priors?
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Does GVQA Overcome Priors?

Could report % of incorrect answers that come from training priors.
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Are All Priors Bad?

• Some priors could help with world knowledge - sky is blue, a
person usually has one nose, etc.
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Are All Priors Bad?

• Some priors could help with world knowledge - sky is blue, a
person usually has one nose, etc.

• Interesting future direction (pointed out by the authors) -
“models that can utilize the best of both worlds (visual
grounding and priors)”.

68



Are All Priors Bad?

• Some priors could help with world knowledge - sky is blue, a
person usually has one nose, etc.

• Interesting future direction (pointed out by the authors) -
“models that can utilize the best of both worlds (visual
grounding and priors)”.

• Priors need to be derived from world knowledge and must NOT
be artifacts of a particular dataset.
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Thank you!
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The Problem of Language Priors



Previous Models on VQA-CP



Qualitative Examples (GVQA)



Increased Transparency



Increased Transparency

GVQA is “looking” at the smartphone (unlike SAN), but yet incorrectly
answers ‘no’, because the VCC does not recognize the phone as a
smartphone. It however correctly predicts ‘phone’, ‘electronic’, ‘black’ and
‘right’.



Full Results



Additional Splits of VQA-CP v2



Performance of SAN with Qmain



Performance of GVQA− VCCloss on VQA v1 and VQA v2
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