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Underlying Motivation

@ We have become great at mapping inputs to outputs in the classic
supervised setting.

@ But we greatly lack the ability to generalize to conditions that are
different from the ones encountered during training - and the real
world /s messy!

@ We need the ability to transfer knowledge to new conditions -
Transfer Learning.
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Underlying Motivation

@ Classic Supervised Learning - generally assumes that the training and
test set examples are from same task and domain.

Traditional ML

Task / domain A

Task /domainB [

Training and
evaluation on the same
task or domain.
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Underlying Motivation

o Task: objective of our model (like image recognition).

e Domain: where the data comes from (like images of Indian
footpaths).

Traditional ML

\ Task / domain A

Task /domainB [

Training and
evaluation on the same
task or domain.
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Underlying Motivation

@ Traditional Supervised ML breaks down when we do NOT have
sufficient labeled data for the task or domain we care about.

Traditional ML

Task /domainB [

Training and
evaluation on the same
task or domain.
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Underlying Motivation

@ Traditional Supervised ML breaks down when we do NOT have
sufficient labeled data for the task or domain we care about.

@ Performance Deterioration!

Traditional ML

~
\ Task/domain A

Task / domain B [

Training and
evaluation on the same
task or domain.
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Underlying Motivation

@ Traditional Supervised ML breaks down when we do NOT have
sufficient labeled data for the task or domain we care about.

@ Cannot reuse existing model!

Traditional ML

: \ Task /domain A

Task /domainB |

Training and
evaluation on the same
task or domain.

Model A Model B
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Underlying Motivation

@ Transfer Learning allows us to leverage already existing labeled data

of some related task or domain.

Transfer learning

\ Source task /
| domain Target task /
) domain

Storing knowledge gained solving
one problem and applying it to a
different but related problem.

Knowledge
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Why Transfer Learning NOW?

@ “Transfer Learning will be the next driver of ML success” - Andrew

Ng, NIPS 2016.

Drivers of ML success in industry

Supervised learning
Transfer learning

Commercial
success

Unsupervised learning

_Reinforcement learning

- Andrew Ng, NIPS 2016 tutorial
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Transfer Learning Defined

@ Consider binary document classification as a running example.
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@ Consider binary document classification as a running example.

@ A domain D consists of a feature space x and a marginal probability
distribution P(X) over the feature space, where X = x1,..,x, € X.
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Transfer Learning Defined

@ Consider binary document classification as a running example.

@ A domain D consists of a feature space x and a marginal probability
distribution P(X) over the feature space, where X = x1,..,x, € X.

@ For document classification, x = space of all document
representations, x; is the i-th term of feature vector corresponding to
some document and X is the sample of documents used for training.
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Transfer Learning Defined

@ Consider binary document classification as a running example.

@ A domain D consists of a feature space x and a marginal probability
distribution P(X) over the feature space, where X = x1,..,x, € X.

@ For document classification, x = space of all document
representations, x; is the i-th term of feature vector corresponding to
some document and X is the sample of documents used for training.

@ So, Domain D = {x, P(X)}.
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Transfer Learning Defined

@ Task T ={v, P(Y|X)}, where v is the label space and P(Y|X) is
the conditional probability distribution typically learned from the
training data.
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Transfer Learning Defined

@ Task T ={v, P(Y|X)}, where v is the label space and P(Y|X) is
the conditional probability distribution typically learned from the
training data.

@ For transfer learning, we are given the source domain Dg, source task
Ts, target domain Dt and the target task T7.
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Transfer Learning Defined

@ Task T ={v, P(Y|X)}, where v is the label space and P(Y|X) is
the conditional probability distribution typically learned from the
training data.

@ For transfer learning, we are given the source domain Dg, source task
Ts, target domain Dt and the target task T7.
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Transfer Learning Defined

@ Task T ={v, P(Y|X)}, where v is the label space and P(Y|X) is
the conditional probability distribution typically learned from the
training data.

@ For transfer learning, we are given the source domain Dg, source task
Ts, target domain Dt and the target task T7.

@ Now, the objective of transfer learning is to enable us to learn the
target conditional probability distribution P(Y7|X7) in Dt with the
information gained from Ds and Ts where Ds # Dt or Ts # Tt.

@ In most cases, we have a limited number of labeled target examples
(exponentially smaller than the number of labeled source examples).
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Transfer Learning Scenarios

o Given source and target domains Ds and Dt where D = {x, P(X)}
and source and target tasks Ts and Tt where T = {v, P(Y|X)}, the
source and target conditions can vary in four ways -
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Transfer Learning Scenarios

o Given source and target domains Ds and Dt where D = {x, P(X)}
and source and target tasks Ts and Tt where T = {v, P(Y|X)}, the
source and target conditions can vary in four ways -

@ xs # x7 (cross-lingual adaption in NLP).
@ P(Xs) # P(X7) (domain adaptation).
@ s # 7 (practically occurs with scenario 4).

Pranav Goel 14075039 (CSE B.Tech. Pt. | Transfer Learning February 2018 12 /27



Transfer Learning Scenarios

o Given source and target domains Ds and Dt where D = {x, P(X)}
and source and target tasks Ts and Tt where T = {v, P(Y|X)}, the
source and target conditions can vary in four ways -

@ xs # x7 (cross-lingual adaption in NLP).

@ P(Xs) # P(X7) (domain adaptation).

© s # 1 (practically occurs with scenario 4).

Q@ P(Ys|Xs) # P(Yr|X7) (imbalance with respect to the classes, usually
handled with oversampling or undersampling).
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Transfer Learning Methods

@ Deep Learning has brought about many set of approaches for transfer
learning.
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Transfer Learning Methods

Using pre-trained CNN features
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Transfer Learning Methods

Using pre-trained CNN features

@ Image Detection on ImageNet using CNN - features/representations
learned by the layers.

Pranav Goel 14075039 (CSE B.Tech. Pt. | Transfer Learning February 2018 14 /27



Transfer Learning Methods

Using pre-trained CNN features
@ Image Detection on ImageNet using CNN - features/representations
learned by the layers.

@ CNN trained on ImageNet seems to capture details about the way
animals and objects are structured and composed, which is relevant
when dealing with images in general.
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Using pre-trained CNN features

@ Image Detection on ImageNet using CNN - features/representations
learned by the layers.

@ CNN trained on ImageNet seems to capture details about the way
animals and objects are structured and composed, which is relevant
when dealing with images in general.

@ Astounding success in vision
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Transfer Learning Methods

Using pre-trained CNN features

@ Image Detection on ImageNet using CNN - features/representations
learned by the layers.

@ CNN trained on ImageNet seems to capture details about the way
animals and objects are structured and composed, which is relevant
when dealing with images in general.

@ Astounding success in vision

@ Beyond Vision?

@ Mostly used in scenario 3 - adapting to new tasks.
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Transfer Learning Methods

Making Representations more similar
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Transfer Learning Methods

Making Representations more similar

@ Representations for the two domains should be as similar as possible.

Pranav Goel 14075039 (CSE B.Tech. Pt. | Transfer Learning February 2018 15 / 27



Transfer Learning Methods

Making Representations more similar
@ Representations for the two domains should be as similar as possible.

@ Capture commonalities between domains, do NOT focus on domain
specific characteristics
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Transfer Learning Methods

Making Representations more similar
@ Representations for the two domains should be as similar as possible.
@ Capture commonalities between domains, do NOT focus on domain
specific characteristics

@ Actively encourage our autoencoder/neural model to learn similar
representations -
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Transfer Learning Methods

Making Representations more similar
@ Representations for the two domains should be as similar as possible.
@ Capture commonalities between domains, do NOT focus on domain
specific characteristics
@ Actively encourage our autoencoder/neural model to learn similar

representations -
@ A pre-processing step to get new representation to then use for training.
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Transfer Learning Methods

Making Representations more similar
@ Representations for the two domains should be as similar as possible.

@ Capture commonalities between domains, do NOT focus on domain
specific characteristics
@ Actively encourage our autoencoder/neural model to learn similar
representations -
@ A pre-processing step to get new representation to then use for training.
@ Modify the learning objective or loss function.
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Transfer Learning Methods

Confusing Domains
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Transfer Learning Methods

Confusing Domains

@ Add another objective to an existing model that encourages it to
confuse the two domains.
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Transfer Learning Methods

Confusing Domains

@ Add another objective to an existing model that encourages it to
confuse the two domains.

@ Original task objective has an associated loss function (based on
predicted and actual labels).

@ Domain Confusion Loss - classification loss when the model tries to
predict the domain of the input example.
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Transfer Learning Methods

Confusing Domains

@ Add another objective to an existing model that encourages it to
confuse the two domains.

@ Original task objective has an associated loss function (based on
predicted and actual labels).

@ Domain Confusion Loss - classification loss when the model tries to
predict the domain of the input example.

o Difference from regular loss? Gradients that flow from the loss to the
rest of the network are reversed - gradient reversal layer - causes
model to try and maximize error.
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Transfer Learning Methods

Confusing Domains
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Transfer Learning Methods

Confusing Domains J
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Model learns representations that allow it to minimize its original
objective, while not allowing it to differentiate between the two
domains, which is beneficial for knowledge transfer!
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Transfer Learning Methods

Confusing Domains J
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Left - Model trained only with regular objective; learned rep. clearly
separates the domains.

Right - Model objective augmented with domain confusion term.
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Applications

Applications of Transfer Learning

Learning from Simulations

@ For many ML applications that rely on hardware for interaction,
gathering data and training a model in the real world is either
expensive, time-consuming, or simply too dangerous.

Pranav Goel 14075039 (CSE B.Tech. Pt. | Transfer Learning February 2018 19 /27



Applications

Applications of Transfer Learning

Learning from Simulations

@ For many ML applications that rely on hardware for interaction,
gathering data and training a model in the real world is either
expensive, time-consuming, or simply too dangerous.

@ Simulation offers an alternative, less risky way to gather and use data.

Pranav Goel 14075039 (CSE B.Tech. Pt. | Transfer Learning February 2018 19 /27



Applications

Applications of Transfer Learning

Learning from Simulations

@ For many ML applications that rely on hardware for interaction,
gathering data and training a model in the real world is either
expensive, time-consuming, or simply too dangerous.

@ Simulation offers an alternative, less risky way to gather and use data.

@ Learning from simulation, and applying the knowledge gained or
making the transfer to real world - an example of scenario 2 (same
feature space, different marginal probabilities).
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Applications

Applications of Transfer Learning

Learning from Simulations - Benefits

@ Makes data gathering easy (objects can be bounded and analyzed).
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Applications

Applications of Transfer Learning

Learning from Simulations - Benefits
@ Makes data gathering easy (objects can be bounded and analyzed).

@ Enables fast training (learning can be parallelized across multiple
instances).
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Applications

Applications of Transfer Learning

Learning from Simulations - Self-Driving Cars J

Udacity's self-driving car simulator
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Applications

Applications of Transfer Learning

Learning from Simulations - Robotics

Training models on a real robot is too slow and robots are expensive to
train.

Robot and simulation images
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Applications

Applications of Transfer Learning

Adapting to New Domains

@ Data where labeled information is easily accessible and the data that
we actually care about are often different.
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Applications

Applications of Transfer Learning

Adapting to New Domains
@ Data where labeled information is easily accessible and the data that
we actually care about are often different.
@ Even if training and test sets look the same, training data may
contain some bias (which we cannot perceive) that will be exploited
by model to overfit.
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Applications

Applications of Transfer Learning

Adapting to New Domains J

Domain 1

Domain 2

Different visual domains
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Applications

Applications of Transfer Learning

Adapting to New Domains J
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Different text types/genres
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Applications

Applications of Transfer Learning

Next level challenge - domains pertaining to individual or groups of users J
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Applications

Applications of Transfer Learning

Next level challenge - domains pertaining to individual or groups of users J

Consider Automatic Speech Recognition (ASR)
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Thank You

Questions? J
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